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Stable heteroclinic cycles for ensembles of chaotic oscillators
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We study the formation of synchronous clusters in ensembles of globally coupled chaotic oscillators. We
reveal that at least three clusters of identical synchronization are formed in such a system for large enough
values of coupling strength. Our main result is an unexpected intermittent process of clusterization. This
process gives strong indication to the existence of a stable heteroclinic cycle.
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The dynamics of ensembles of chaotic oscillators is
object of active investigation and growing interest. Such s
tems arise in many fields, such as optics, electronics, ch
istry, condensed matter, and biology~cf. @1#!. Different types
of synchronization have been found recently for ensemb
of chaotic oscillators: phase@2#, generalized@3#, partial @4#,
and identical chaotic synchronization@5#. Recently, real sys-
tems which can be modeled by globally coupled oscillat
have been reported in several fields~cf. @6#!. For investiga-
tion of partial synchronization~clusterization! ensembles
with global couplings are regarded as a very interesting p
ticular case in which model investigations@7# as well as ex-
perimental observations@6# of this phenomenon have bee
carried out. We can distinguish effects correlated with
loss of synchronization as another group of phenomena:
dling of an attractor basin@8#, bubbling@9#, and on-off inter-
mittency@10#. All these phenomena have also been found
laboratory experiments as well as in natural systems~cf. @1#!.
In this article we study another type of intermittency, whi
has not been related to synchronization before. Intermitte
as observed experimentally in hydrodynamical problems@11#
is explained by the existence of a stable heteroclinic cycl
the phase space of the corresponding model systems@12,13#,
which are usually ordinary differential equation systems
amplitudes of interacting modes. A heteroclinic cycle is
sequence of trajectories connecting a number of saddle
variant sets in a topological circle@13# ~in many cases the
invariant sets are fixed points!. Robust heteroclinic cycles
may exist in systems with symmetry. A trajectory approa
ing a heteroclinic cycle spends long periods near the sa
sets and makes fast transitions from one set to the next
The intervals between these transitions increase expo
tially without any limit, but the unavoidable presence
noise in experiments or a small violation of the symme
limit the increasing of these intervals and lead to interm
tency.

In this article we investigate synchronous cluster regim
in an ensemble of globally coupled oscillators. Using a
cently proposed method of stability analysis@14#, we find
unexpected rich intermittent clusterization processes for
system, and we show that the main reason for this is that
regime approached by this process is unstable. We give
explanation of this phenomenon by demonstrating the p
ence of a stable heteroclinic cycle.
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We analyze an ensemble ofN globally coupled identical
Rossler oscillators as a model system:

ẋi52yi2zi , i 51,N,

ẏi5xi1Ayi , ~1!

żi5B1zi~xi2C!1
d

N (
k51,kÞ i

N

F~zk!.

A,B,C are parameters of each oscillator andd is the cou-
pling strength. The coupling between elements is chose
be a nondiffusion type, which is very widely distributed
nature@15,16#. In particular, we have chosen the nonline
coupling functionF(z)5z/(11sz2) which is used to de-
scribe the interaction between oscillators with a frequen
control ~lock! through the control signals from frequenc
locking loops @16#. This covers a wide range of physica
systems, because this loop of frequency control has b
built for different electronic/electrical oscillators. If an osci
lator has this loop, then the equations for its frequency
be written and a coupling of our type can be organized. E
amples of such physical systems are given in@16#. For our
case the chosen function is used to simplify the dynamics
the system for increasing coupling strength, i.e., to regula
and then suppress oscillations. Several other coupling fu
tions also give clusterization in this ensemble and we h
chosen this one for simplicity in the numerical calculation
We fix the parameters so that each partial element is i
chaotic state (A50.2,B50.2,C55.7). We also fix the pa-
rameter of the coupling functions50.01 and study the de
pendence of the ensemble dynamics on the coupling stre
d.

It has been shown recently@14# that clusterization in a
system of globally coupled maps can be caused by nume
pitfalls. We therefore use the numerical method suggeste
@14# to avoid these pitfalls.

Suppose that elements of the ensemble can be div
into K groups, inside which the coordinates of the eleme
are close, i.e.,iVri,10d1, whereVr :$Vxr5xi2xr ,Vyr5yi
2yr ,Vzr5zi2zr% if the i th and ther th elements belong to
the same group (29&d1&25). Then, we describe the dy
namics of the whole ensemble by a system of onlyK ele-
ments:
©2002 The American Physical Society01-1
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Ẋi52Yi2Zi , i 51,K,

Ẏi5Xi1AYi , ~2!

Żi5B1Zi~Xi2C!1
d

N (
k51

K

~mk2d ik!F~Zk!.

Here,mk is the number of elements in thekth group,d ik is
the Kronecker symbol, i.e.,d ik50 if kÞ i and d i i 51;
(k51

K mk5N. We next introduce linearized systems for t
vectors of the difference variablesVr :

V̇xr52Vyr2Vzr , r 5K11,N,

V̇yr5Vxr1AVyr , ~3!

V̇zr5XiVzr1ZiVxr2CVzr1
d

N
F8~Zi !Vzr

in place of the remainingN2K elements. We normalize
these vectors periodically to avoid pitfalls due to finite p
cision and save~accumulate! the logarithms of the norms o
these vectors@ log10(iVri)#. If any of these logarithms be
come larger than some valued2, we will restore the usua
coordinatesxr ,yr ,zr . To summarize the method: when th
coordinates of the elements become close with an increa
a dimensionless time~hereafter time!, we switch from the
initial system~1! to the system~2!,~3!. Note thatK depends
on time and means the number of temporal clusters, ca
quasiclusters.

We performed simulations forN555, d55.2 and chose
d1528,d2526 @Fig. 1~a!#. Initial conditions were chosen

FIG. 1. Time series for the number of quasiclusters~a! and of
norms for one difference from each cluster~b! in the caseN
555, d55.2 for system~1!.
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randomly, so that none of the coordinates of the eleme
coincide within the precision 10d1 with any other, i.e., in the
beginning each quasicluster~hereafter cluster! consists of
only one element. After 50.000 units of time, the differenc
between the coordinates of 18 elements become sequen
less than 10d1, i.e., the elements form one cluster of identic
synchronization which is reached at about 100.000 units
time, and the number of quasiclusters decreases to 38. T
in analogy with the previous case, two further clusters e
consisting of 18 elements are formed and the number
quasiclusters decreases to four. The system spends a
100.000 units of time in this four-cluster regime. Then, o
of the clusters scatters completely to separated elements
these form a cluster again~see explanations below!. Such a
scattering of a cluster repeats aperiodically. The time that
system spends in the unstable four-cluster regime betw
scattering of one of the clusters increases exponentially@see
Fig. 1~a!#. Thus, we have obtained a complicated clusteri
tion process.

Let us consider the dependence of the logarithms
norms log10(iVri) on time @Fig. 1~b!#. One norm increases
but in parallel the other two decrease. The increasing no
leads to the scattering and consequently to the formation
the corresponding cluster. After that, the norm correspond
to another cluster increases. Each time the increase of
norm starts with a smaller value. As a result, the time dur
which the system remains in the cluster regime increase

We now study the process of scattering and the sub
quent reconstruction of a cluster in detail. Each time t
process takes about 23105 units of time. It is important to
emphasize that the time series of all elements in the con
ered cluster regime are periodic. We introduce a geome
phase for these oscillations,f i5arctan(xi /yi)ux11Ay150,i

52,N @2#. Figure 2 presents time series for the phases of
elements of the ensemble in the interval of cluster scatter
First, that cluster with the smallest phase deviation from
separated element~from a cluster of only one element! scat-
ters. After the deviation of one of the cluster elements
ceeds some value, the other elements form a new cluste
separated element appears to be close to the next cluster
Thus, the clusters lose their stability strictly sequentially.

Transverse Lyapunov exponents were introduced in@14#
for testing the stability of cluster regimes in ensembles
maps. The transverse Lyapunov exponents for oscillators
defined asl i

k5^ log10m i
k(t)&, wherem i

k(t) are eigenvalues o

FIG. 2. Time series for phases of the elements of the system~1!
in the interval of cluster scattering. Numbers of elements w
equivalent phases for four-cluster regimes at the start and end p
of this interval are shown.N555, d55.2
1-2
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STABLE HETEROCLINIC CYCLES FOR ENSEMBLES OF . . . PHYSICAL REVIEW E 66, 026201 ~2002!
the system ~3!, presented in evolution form:Vr(t)
5Di(t)Vr(0). If all the transverse Lyapunov exponents a
negative (l i

max,0, i 51,K) we can, therefore, conclude th
the cluster regime is stable. In the considered case, the va
of the maximal transverse Lyapunov exponents for the fo
cluster regime are l150.000 18,l2520.000 45,l3
520.000 18, which are in complete accordance with
dynamics of the norms. Thus, the cluster regime obtaine
our numerical experiment is unstable.

This analysis allows us also to trace an analogy with p
cesses observed in systems with stable heteroclinic cy
@13#. In the case studied here a stable heteroclinic cy
which connects saddle limit cycles is expected to exist, wh
for the majority of cases the heteroclinic cycle connects fix
points. For smaller values of the coupling strength (4
,d,4.88) the intermittent clusterization process is obtain
for the quasiperiodic cluster regime.

We analyze now conditions for obtaining this effect a
describe the region where we can expect it. First we stud
ensemble for which the number of elements is divisible
the number of clusters~three in our case!; let us takeN
560. Three clusters, each of which consists of 20 eleme
are then obtained in the region 4.2<d<5.44 @Fig. 3~a!#. We
call this regime symmetric, as a regime with an equal nu
ber of elements in the clusters. The maximal transve
Lyapunov exponents for each of the clusters (l i

max,i 51,3)
are negative in the whole region ofd, i.e., the cluster regime
is stable there@Fig. 3~a!#. Moreover, we have revealed th
asymmetric regimes~regimes with a different number of e
ements in the clusters! are unstable in the major portion o
this region@see Fig. 3~b!#. Hence, the symmetric regime
the only stable regime.

FIG. 3. ~a! Dependence of the number of clusters and the ma
mal transverse Lyapunov exponents for a symmetric three-clu
regime on the coupling strength.~b! Maximal transverse Lyapunov
exponents for a three-cluster asymmetric regime depending on
coupling strength.l1

max, l2
max, and l3

max obtained for clusters of
19, 20, and 21 elements, respectively (N560).
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Now, we go back toN555, where a three-cluster regim
is realized in the region of smaller values of couplin
strength and this regime is stable in the whole region~Fig.
4!. Two clusters in this regime contain 18 elements, but
third one contains 19 elements. With increasing coupl
strength, one element separates from the cluster with 19
ements, i.e., a fourth cluster, containing one element
formed. The calculation of the maximal transverse Lyapun
exponents for each of these clusters, containing 18 eleme
shows that the four-cluster regime is unstable in the wh
region where it was observed~Fig. 4!.

So, if the number of elements in the ensemble is divisi
by the number of clusters, then it is possible to get a sy
metric regime~equal number of elements in each cluste!.
Using the concept of transverse Lyapunov exponents,
have found that their stability regions are significantly wid
than for nonsymmetric clusters. The stability regions o
K-cluster regime can be divided into two parts: with we
and strong convergence. In the region of strong converge
the Lyapunov exponents of the symmetricK-cluster regime
have large absolute values, and the nonsymmetric regi
close to the symmetric ones are stable. In the region of w
convergence, absolute values of the Lyapunov exponent
the symmetric regime are small, and even nearby nons
metric regimes are unstable.

If the number of elements in the ensemble is not divisi
by the number of clusters, then there are only nonsymme
regimes. We have found a stable regime in the region
strong convergence of theK-cluster regime. In the region o
weak convergence, there is no stable regime. An intermit
clusterization process, which is expected to be correla
with a stable heteroclinic cycle, appears in this region. T
process provides exponential increasing intervals dur
which the system remains in the unstable cluster regime

We have also obtained this effect for a simpler case,
ensemble of only seven elements, which is the smallest p
sible number of elements for obtaining this effect because
elements form three symmetrical clusters and the seve
element breaks this symmetry. The process of intermitt
formation of a four-cluster regime for this ensemble is o
tained in the cased54.5. Here, the behavior obtained is a
intermittent clusterization process approaching the cha
cluster regime~Fig. 5!.

In conclusion, we have studied the effects of synchron
clusterization in an ensemble of chaotic oscillators with g

i-
er

he

FIG. 4. Dependence ofNclust and the maximal transvers
Lyapunov exponents for these cluster regimes on the coup
strength (N555).
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bal nonlinear couplings. We have revealed that three or m
clusters of identical synchronization are realized in suc
system for large enough coupling strength. The cluster
gimes can be chaotic, quasiperiodic, or periodic depend
on the coupling strength. Our main finding is an unexpec
intermittent process of clusterization. The qualitative char
teristics of this process are an exponential increase of
intervals during which the system remains in the cluster
gime and a strict sequence of scatterings of clusters.
present the time series of norms as an explanation of

FIG. 5. Time series for all elements of the ensemble in
unstable four-cluster regime.N57, d54.5.
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increasing intervals. The strict sequence of scatterings
clusters is qualitatively explained through the introduction
phases. These characteristics enable us to relate this pro
to a trajectory approaching a heteroclinic cycle. We trac
further analogy and show that the invariant sets correspo
ing to the cluster regimes are of saddle type, as they sho
be for the invariant sets connected in a heteroclinic cyc
Thus, we have carried out a detailed qualitative analysis
this phenomenon. We expect that these numerical findi
will stimulate further theoretical research and experimen
verification in various fields, such as ensembles of las
electrochemical oscillators, or neurons, where intervals
synchronous behavior of the system with intermittent perio
of loss of synchronization should be observed. Such interm
tent behavior is similar to the described clusterization p
cess but without growing synchronous intervals. The mec
nism of this intermittency is analogous to that obtained
hydrodynamical problems@13#.
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