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Stable heteroclinic cycles for ensembles of chaotic oscillators
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We study the formation of synchronous clusters in ensembles of globally coupled chaotic oscillators. We
reveal that at least three clusters of identical synchronization are formed in such a system for large enough
values of coupling strength. Our main result is an unexpected intermittent process of clusterization. This
process gives strong indication to the existence of a stable heteroclinic cycle.
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The dynamics of ensembles of chaotic oscillators is an We analyze an ensemble bf globally coupled identical
object of active investigation and growing interest. Such sysRossler oscillators as a model system:
tems arise in many fields, such as optics, electronics, chem-

istry, condensed matter, and biolo@y. [1]). Different types Xi=—y,—z, i=1N,
of synchronization have been found recently for ensembles
of chaotic oscillators: phade], generalized3], partial [4], Vi=X;+Ay;, (1)
and identical chaotic synchronizatipf]. Recently, real sys-
tems which can be modeled by globally coupled oscillators g N
have been reported in several field$. [6]). For investiga- z=B+z(x;—C)+ N % F(zy).
=1k#i

tion of partial synchronization(clusterization ensembles
with global couplings are regarded as a very interesting par- ) ,
ticular case in which model investigatiofig] as well as ex- ~B,C are parameters of each oscillator amds the cou-

perimental observation] of this phenomenon have been pling stren'gth..The coupling bgtween elgments_, is. chosen to
carried out. We can distinguish effects correlated with thebe a nondifiusion type, which is very widely d'St”bUte.d in
ature[15,16]. In particular, we have chosen the nonlinear

oo e Souping functon’ (o) (L 7) whh s vsed to ce

'ttg 101 Al th h ’ % ' Iso b found i scribe the interaction between oscillators with a frequency
mittency[10]. [hese pnenomena have aiso been Tound g pir) (lock) through the control signals from frequency
laboratory experiments as well as in natural systérhg1]).

, i , i _locking loops[16]. This covers a wide range of physical
In this article we study another type of intermittency, which systems, because this loop of frequency control has been

has not been related to synchronization before. Intermittency,s for different electronic/electrical oscillators. If an oscil-
as observed experimentally in hydrodynamical problghi$  |ator has this loop, then the equations for its frequency can
is explained by the existence of a stable heteroclinic CyCIe |rbe written and a Coup"ng of our type can be Organized_ Ex-
the phase space of the corresponding model systg?%3,  amples of such physical systems are giverilifi]. For our
which are usually ordinary differential equation systems forcase the chosen function is used to simplify the dynamics of
amplitudes of interacting modes. A heteroclinic cycle is athe system for increasing coupling strength, i.e., to regularize
sequence of trajectories connecting a number of saddle irand then suppress oscillations. Several other coupling func-
variant sets in a topological circlgd3] (in many cases the tions also give clusterization in this ensemble and we have
invariant sets are fixed pointsRobust heteroclinic cycles chosen this one for simplicity in the numerical calculations.
may exist in systems with symmetry. A trajectory approach-We fix the parameters so that each partial element is in a
ing a heteroclinic cycle spends long periods near the saddiehaotic state A=0.2B=0.2C=5.7). We also fix the pa-
sets and makes fast transitions from one set to the next oneameter of the coupling functior=0.01 and study the de-
The intervals between these transitions increase exponependence of the ensemble dynamics on the coupling strength
tially without any limit, but the unavoidable presence of d.
noise in experiments or a small violation of the symmetry It has been shown recentpl4] that clusterization in a
limit the increasing of these intervals and lead to intermit-system of globally coupled maps can be caused by numerical
tency. pitfalls. We therefore use the numerical method suggested in
In this article we investigate synchronous cluster regime$14] to avoid these pitfalls.
in an ensemble of globally coupled oscillators. Using a re- Suppose that elements of the ensemble can be divided
cently proposed method of stability analy$is4], we find  into K groups, inside which the coordinates of the elements
unexpected rich intermittent clusterization processes for thigre close, i.e.|V,||<10%, whereV, :{V,,=X =X, ,Vy,=V;
system, and we show that the main reason for this is that the'y, ,V,,=z,—z} if the ith and therth elements belong to
regime approached by this process is unstable. We give ahe same group<{9=45,=<—5). Then, we describe the dy-
explanation of this phenomenon by demonstrating the presiamics of the whole ensemble by a system of ddlgle-
ence of a stable heteroclinic cycle. ments:
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3 . coincide within the precision 20 with any other, i.e., in the
:OB -6000 Tog(Vl) —— RN -9 beginning each quasiclustéhereafter clustgrconsists of
8000 H logngmy -~ N i only one element. After 50.000 units of time, the dlﬁerencgs
log(IVly --=- ats between the coordinates of 18 elements become sequentially
-10000 Z Z v — 8 less than 10, i.e., the elements form one cluster of identical
® 2x10 4x10 t6"1° 8x10 10 synchronization which is reached at about 100.000 units of

FIG. 1. Time series for the number of quasicluste@sand of
norms for one difference from each clustés) in the caseN
=55,d=5.2 for system(1).

Xi:_Yi

_Zi7

-Yi:Xi‘FAYi,

K

i=1K,

. d
Zi=B+Zi(X—C)+ = > (M & )F(Zy).
N =1

)

Here,m, is the number of elements in theh group, & is
the Kronecker symbol, i.e.5 =0 if k#i and §;=1,;
=K_ m=N. We next introduce linearized systems for theleads to the scattering and consequently to the formation of
vectors of the difference variabl&4 :

time, and the number of quasiclusters decreases to 38. Then,
in analogy with the previous case, two further clusters each
consisting of 18 elements are formed and the number of
quasiclusters decreases to four. The system spends about
100.000 units of time in this four-cluster regime. Then, one
of the clusters scatters completely to separated elements and
these form a cluster agaiisee explanations belowSuch a
scattering of a cluster repeats aperiodically. The time that the
system spends in the unstable four-cluster regime between
scattering of one of the clusters increases exponenfisdlg
Fig. 1(@)]. Thus, we have obtained a complicated clusteriza-
tion process.

Let us consider the dependence of the logarithms of
norms logy(||V,|]) on time[Fig. 1(b)]. One norm increases
but in parallel the other two decrease. The increasing norm

the corresponding cluster. After that, the norm corresponding
to another cluster increases. Each time the increase of the

Vye=—Vy, =V, r=K+1N, norm starts with a smaller value. As a result, the time during
which the system remains in the cluster regime increases.
V=V +AV,,, (3) We now study the process of scattering and the subse-

d
Vo =XVt ZiVy, — CVzr"_NF,(Zi)VZr

quent reconstruction of a cluster in detail. Each time this
process takes about<210° units of time. It is important to

emphasize that the time series of all elements in the consid-
ered cluster regime are periodic. We introduce a geometric

in place of the remainingN—K elements. We normalize Phase for these oscillationsg; = arctang; /)y, +ay,=o
these vectors periodically to avoid pitfalls due to finite pre-=2,N [2]. Figure 2 presents time series for the phases of all
cision and savéaccumulatgthe logarithms of the norms of elements of the ensemble in the interval of cluster scattering.
these vectorglog,(||V,|))]. If any of these logarithms be- First, that cluster with the smallest phase deviation from the
come larger than some valu®, we will restore the usual separated elemefifrom a cluster of only one elemerdcat-
coordinatesx, ,y; ,z, . To summarize the method: when the ters. After the deviation of one of the cluster elements ex-
coordinates of the elements become close with an increase @eeds some value, the other elements form a new cluster. A
a dimensionless timé¢hereafter timg we switch from the separated element appears to be close to the next cluster now.
initial system(1) to the systen{2),(3). Note thatk depends Thus, the clusters lose their stability strictly sequentially.
on time and means the number of temporal clusters, called Transverse Lyapunov exponents were introducefili
quasiclusters. for testing the stability of cluster regimes in ensembles of
We performed simulations foN=55,d=5.2 and chose maps. The transverse Lyapunov exponents for oscillators are
8,=—8,8,=—6 [Fig. 1(@)]. Initial conditions were chosen defined as\=(log;qu (t)), whereuk(t) are eigenvalues of
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third one contains 19 elements. With increasing coupling
strength, one element separates from the cluster with 19 el-
ements, i.e., a fourth cluster, containing one element, is
FIG. 3. (a) Dependence of the number of clusters and the maxiformed. The calculation of the maximal transverse Lyapunov
mal transverse Lyapunov exponents for a symmetric three-clust%xponems for each of these clusters, containing 18 elements,
regime on the coupling strengtth) Maximal transverse Lyapunov  shows that the four-cluster regime is unstable in the whole
exponents for a three-cluster asymmetric regime depending on ”ipegion where it was observe#ig. 4).
coupling strengthA 7™, A", and A3 obtained for clusters of g it the number of elements in the ensemble is divisible
19,20, and 21 elements, respectively£60). by the number of clusters, then it is possible to get a sym-

the system (3), presented in evolution form:V,(t) metric regime(equal number of elements in each cluster

=D;(t)V,(0). If all the transverse Lyapunov exponents are USing the concept of transverse Lyapunov exponents, we
max e have found that their stability regions are significantly wider

negative {; “°<0, i=1K) we can, therefore, conclude that ¢ = ol h i . ;
the cluster regime is stable. In the considered case, the valudi@n for nonsymmetric clusters. The stability regions of a

of the maximal transverse Lyapunov exponents for the fourK-cluster regime can be divided into two parts: with weak
cluster regime are \,=0.00018\,=—0.00045\4 and strong convergence. In the region of strong convergence,
=-0.00018, which are in complete accordance with theln® Lyapunov exponents of the symmetiecluster regime
dynamics of the norms. Thus, the cluster regime obtained iR@ve large absolute values, and the nonsymmetric regimes
our numerical experiment is unstable. close to the symmetric ones are stable. In the region of weak
This analysis allows us also to trace an analogy with proconvergence, absolute values of the Lyapunov exponents of
cesses observed in systems with stable heteroclinic cyclédbe symmetric regime are small, and even nearby nonsym-
[13]. In the case studied here a stable heteroclinic cyclenetric regimes are unstable.
which connects saddle limit cycles is expected to exist, while If the number of elements in the ensemble is not divisible
for the majority of cases the heteroclinic cycle connects fixedby the number of clusters, then there are only nonsymmetric
points. For smaller values of the coupling strength (4.74regimes. We have found a stable regime in the region of
<d<4.88) the intermittent clusterization process is obtainedstrong convergence of thé-cluster regime. In the region of
for the quasiperiodic cluster regime. weak convergence, there is no stable regime. An intermittent
We analyze now conditions for obtaining this effect andclusterization process, which is expected to be correlated
describe the region where we can expect it. First we study afith a stable heteroclinic cycle, appears in this region. This
ensemble for which the number of elements is divisible byprocess pro\/ides exponentiai increasing intervals during
the number of clustergthree in our case let us takeN  which the system remains in the unstable cluster regime.
=60. Three clusters, each of which consists of 20 elements, We have also obtained this effect for a simpler case, an
are then obtained in the region 42<5.44[Fig. 3a@]. We  ensemble of only seven elements, which is the smallest pos-
call this regime symmetric, as a regime with an equal numsible number of elements for obtaining this effect because six
ber of elements in the clusters. The maximal transverselements form three symmetrical clusters and the seventh
Lyapunov exponents for each of the clustexs'{*,i=1,3)  element breaks this symmetry. The process of intermittent
are negative in the whole region df i.e., the cluster regime formation of a four-cluster regime for this ensemble is ob-
is stable therdFig. 3(a)]. Moreover, we have revealed that tained in the casd=4.5. Here, the behavior obtained is an
asymmetric regimegregimes with a different number of el- intermittent clusterization process approaching the chaotic
ements in the clusterare unstable in the major portion of cluster regimeFig. 5).
this region[see Fig. 8)]. Hence, the symmetric regime is In conclusion, we have studied the effects of synchronous
the only stable regime. clusterization in an ensemble of chaotic oscillators with glo-
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increasing intervals. The strict sequence of scatterings of
] clusters is qualitatively explained through the introduction of

phases. These characteristics enable us to relate this process
to a trajectory approaching a heteroclinic cycle. We trace a
H further analogy and show that the invariant sets correspond-
vy . A Ll g ing to the cluster regimes are of saddle type, as they should
' ) = —— be for the invariant sets connected in a heteroclinic cycle.
Thus, we have carried out a detailed qualitative analysis of
t this phenomenon. We expect that these numerical findings

FIG. 5. Time series for all elements of the ensemble in theWill Stimulate further theoretical research and experimental

unstable four-cluster regimél=7, d=4.5. verification in various fields, such as ensembles of lasers,

electrochemical oscillators, or neurons, where intervals of

) _ synchronous behavior of the system with intermittent periods

bal nonlinear couplings. We have revealed that three or morgf |oss of synchronization should be observed. Such intermit-

clusters of identical synchronization are realized in such gent pehavior is similar to the described clusterization pro-
system for large enough coupling strength. The cluster regess put without growing synchronous intervals. The mecha-

gimes can be chaotic, quasiperiodic, or periodic dependingism of this intermittency is analogous to that obtained for
on the coupling strength. Our main finding is an unexpectegyqrodynamical problemiL3].

intermittent process of clusterization. The qualitative charac-

teristics of this process are an exponential increase of the We thank A. Pikovsky, A. Popovych, M. Rosenblum, and
intervals during which the system remains in the cluster reM. Zaks for useful discussions. The work was supported by
gime and a strict sequence of scatterings of clusters. Wehe Deutcher Akademischer Austauschdienst and the DFG
present the time series of norms as an explanation of th@~orschergruppe Konfligierende Regeln
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